
INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 1

ACCESS CONTROL OF DATA OF THE USERS IN

ENCRYPTED CLOUD DATABASES

Ms.V.Mahendar, Miss.P.Mounika

Abstract: Software-as-a-service (SaaS) cloud

systems enable application service providers

to deliver their applications via massive

cloud computing infrastructures. However,

due to their sharing nature, SaaS clouds are

vulnerable to malicious attacks. In this

paper, we present IntTest, a scalable and

effective service integrity attestation

framework for SaaS clouds. IntTest provides

a novel integrated attestation graph analysis

scheme that can provide stronger attacker

pinpointing power than previous schemes.

Moreover, IntTest can automatically

enhance result quality by replacing bad

results produced by malicious attackers with

good results produced by benign service

providers. We have implemented a

prototype of the IntTest system and tested it

on a production cloud computing

infrastructure using IBM System S stream

processing applications. Our experimental

results show that IntTest can achieve higher

attacker pinpointing accuracy than existing

approaches. IntTest does not require any

special hardware or secure kernel support

and imposes little performance impact to the

application, which makes it practical for

large-scale cloud systems.

1INTRODUCTION

Cloud computing has emerged as a cost-

effective resource leasing paradigm, which

obviates the need for users maintain

complex physical computing infrastructures

by themselves. Software-as-a-service (SaaS)

clouds e build upon the concepts of software

as a service and service-oriented architecture

(SOA), which enable application service

providers (ASPs) to deliver their

applications via the massive cloud

computing infrastructure. In particular, our

work focuses on data stream processing

services that are considered to be one class

of killer applications for clouds with many

real-world applications in security

surveillance, scientific computing, and

business intelligence. However, cloud

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 2

computing infrastructures are often shared

by ASPs from different security domains,

which make them vulnerable to malicious

attacks. For example, attackers can pretend

to be legitimate service providers to provide

fake service components, and the service

components provided by benign service

providers may include security holes that

can be exploited by attackers.Our work

focuses on service integrity attacks that

cause the user to receive untruthful data

processing results. Although confidentiality

and privacy protection problems have been

extensively studied by previous research, the

service integrity attestation problem has not

been properly addressed. Moreover, service

integrity is the most prevalent problem,

which needs to be addressed no matter

whether public or private data are proessed

by the cloud system.

Although previous work has provided

various software integrity attestation

solutions, those techniques often require

special trusted hardware or secure kernel

support, which makes them difficult to be

deployed on large-scale cloud computing

infrastructures. Traditional Byzantine fault

tolerance (BFT) techniques can detect

arbitrary misbehaviors using full-time

majority voting (FTMV) over all replicas,

which however incur high overhead to the

cloud system. A detailed discussion of the

related work can be found the online

supplementary material. In this paper, we

present IntTest, a new integrated service

integrity attestation framework for

multitenant cloud systems. IntTest provides

a practical service integrity attestation

scheme that does not assume trusted entities

on third-party service provisioning sites or

require application modifications. IntTest

builds upon our previous work Run Test and

AdapTest but can provide stronger

malicious attacker pinpointing power than

Run Test and AdapTest. Specifically, Run

Text and AdapTest as well as traditional

majority voting schemes need to assume that

benign service providers take majority in

every service function. However, in large-

scale multitenant cloud systems, multiple

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 3

malicious attackers may launch colluding

attacks on certain targeted service functions

to invalidate the assumption. To address the

challenge, ntTest takes a holistic approach

by systematically examining both

consistency and inconsistency relationships

among different service providers within the

entire cloud system. The per-function

consistency graph analysis can limit the

scope of damage caused by colluding

attackers, while the global inconsistency

graph analysis can effectively expose those

attackers that try to compromise many

service functions. Hence, IntTest can still

pinpoint malicious attackers even if they

become majority for some service functions.

By taking an integrated approach, IntTest

can not only pinpoint attackers more

efficiently but also can suppress aggressive

attackers and limit the scope of the damage

caused by colluding attacks. Moreover,

IntTest provides result auto correction that

can automatically replace corrupted data

processing results produced by malicious

attackers with good results produced by

benign service providers. Specifically, this

paper makes the following contributions:

We provide a scalable and efficient

distributed service integrity attestation

framework for large scale cloud computing

infrastructures

2 PRELIMINARY

In this section, we first introduce the

software-as-a-service cloud system model.

We then describe our problem formulation

including the service integrity attack model

and our key assumptions.

2.1 SaaS Cloud System Model SaaS

Cloud builds upon the concepts of software

as a service and service-oriented

architecture, which allows application

service providers to deliver their

applications via large-scale cloud computing

infrastructures. Both Amazon Web Service

and Google AppEngine provide a set of

application services supporting enterprise

applications and big data processing. A

distributed application service can be

dynamically composed from individual

service components provided by different

ASPs (pi). For example, a disaster assistance

claim processing application consists of

voice-over-IP (VoIP) analysis component, e-

mail analysis component, community

discovery component, and clustering and

joins components. Our work focuses on data

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 4

processing services which have become

increasingly popular with applications in

many real-world usage domains such as

business intelligence, security surveillance,

and scientific computing. Each service

component, denoted by ci, provides a

specific data processing function, denoted

by fi, such as sorting, filtering, correlation,

or data mining utilities. Each service

component can have one or more input ports

for receiving input data tuples, denoted by

di, and one or more output ports to emit

output tuples.

2.2 Problem Formulation

Given an SaaS cloud system, the goal of

IntTest is to pinpoint any malicious service

provider that offers an untruthful service

function. IntTest treats all service

components as black boxes, which does not

require any special hardware or secure

kernel support on the cloud platform. We

now describe our attack model and our key

assumptions as follows:

Attack model. A malicious attacker can

pretend to be a legitimate service provider or

take control of vulnerable service providers

to provide untruthful service functions.

Malicious attackers can be stealthy, which

means they can misbehave on a selective

subset of input data or service functions

while pretending to be benign service

providers on other input data or functions.

The stealthy behavior makes detection more

challenging due to the following reasons: 1)

the detection scheme needs to be hidden

from the attackers to prevent attackers from

gaining knowledge on the set of data

processing results that will be verified and

therefore easily escaping detection; and 2)

the detection scheme needs to be scalable

while being able to capture misbehavior that

may be both unpredictable and occasional.

In a large-scale cloud system, we need to

consider colluding attack scenarios where

multiple malicious attackers collude or

multiple service sites are simultaneously

compromised and controlled by a single

malicious attacker. Attackers could

sporadically collude, which means an

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 5

attacker can collude with an arbitrary subset

of its colluders at any time. We assume that

malicious nodes have no knowledge of other

nodes except those they interact with

directly. However, attackers can

communicate with their colluders in an

arbitrary way. Attackers can also change

their attacking and colluding strategies

arbitrarily. Assumptions. We first assume

that the total number of malicious service

components is less than the total number of

benign ones in the entire cloud system.

Without this assumption, it would be very

hard, if not totally impossible, for any attack

detection scheme to work when comparable

ground truth processing results are not

available. However, different from RunTest,

AdapTest, or any previous majorityvoting

schemes, IntTest does not assume benign

service components have to be the majority

for every service function, which will

greatly enhance our pinpointing power and

limit the scope of service functions that can

be compromised by malicious attackers.

Second, we assume that the data processing

services are input-deterministic, that is,

given the same input, a benign service

component always produces the same or

similar output (based on a user-defined

similarity function). Many data stream

processin functions fall into this category.

We can also easily extend our attestation

framework to support stateful data

processing services which however is

outside the scope of this paper. Third, we

also assume that the result inconsistency

caused by hardware or software faults can

be marked by fault detection schemes and

are excluded from our malicious attack

detection.

3 DESIGN AND ALGORITHMS

We first present the basis of the IntTest

system: probabilistic replay-based

consistency check and the integrity

attestation graph model. We then describe

the integrated service integrity attestation

scheme in detail. Next, we present the result

auto correction scheme.

3.1 Baseline Attestation Scheme

To detect service integrity attack and

pinpoint malicious service providers, our

algorithm relies on replay-based consistency

check to derive the

consistency/inconsistency relationships

between service providers the consistency

check scheme for attesting three service

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 6

providers offer the same service function f.

The portal sends the original input data d1 to

p1 and gets back the result. Next, the portal

sends d0 1, a duplicate of d1 to p3 and gets

back the result. The portal sees whether p1

and p3 are consistent. The intuition behind

our approach is that if two service providers

disagree with each other on the processing

result of the same input, at least one of them

should be malicious. Note that we do not

send an input data item and its duplicates

(i.e., attestation data) concurrently. Instead,

we replay the attestation data on different

service providers after receiving the

processing result of the original data. Thus,

the malicious attackers cannot avoid the risk

of being detected when they produce false

results on the original data. Replay-based

consistency check. Single tuple processing,

we can overlap the attestation and normal

processing of consecutive tuples in the data

stream to hide the attestation delay from the

user. If two service providers always give

consistent output results on all input data,

there exists consistency relationship between

them. Otherwise, if they give different

outputs on at least one input data, there is

inconsistency relationship between them.

We do not limit the consistency relationship

to equality function since two benign service

providers may produce similar but not

exactly the same results. The credit scores

for the same person may vary by a small

difference when obtained from different

credit bureaus. We allow the user to define a

distance function to quantify the biggest

tolerable result difference.

Definition 1. For two output results, r1 and

r2, which come from two functionally

equivalent service providers, respectively,

result consistency is defined as either r1 ¼

r2, or the distance between r1 and r2

according to user-defined distance function

falls within a threshold _. For scalability, we

propose randomized probabilistic attestation,

an attestation technique that randomly

replays a subset of input data for attestation.

For composite data-flow processing services

consisting of multiple service hops, each

service hop is composed of a set of

functionally equivalent service providers.

Specifically, for an incoming tuple di, the

portal may decide to perform integrity

attestation. If the portal decides to perform

attestation on di, the portal first sends di to a

pre-defined service path p1 ! p2 _ _ _!pl

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 7

receiving the processing result for di, the

portal replays the duplicate(s) of di on

alternative service path(s) such as p0 1 ! p0

2 _ _ _!p0 l, where p0 j provides the same

function fj .The portal may perform data

replay on multiple service providers to

perform concurrent attestation. After

receiving the attestation results, the portal

compares each intermediate result between

pairs of functionally equivalent service

providers pi and p0 i. If pi and p0 i receive

the same input data but produce different

output results, we say that pi and p0 i are

inconsistent.

Definition2. A consistency link exists

between two service providers who always

give consistent output for the same input

data during attestation. An inconsistency

link exists between two service providers

who give at least one inconsistent output for

the same input data during attestation. We

then construct consistency graphs for each

function to capture consistency relationships

among the service providers provisioning

the same function. the consistency graphs

for two functions. Note that two service

providers that are consistent for one function

are not necessarily consistent for another

function. This is the reason why we confine

consistency graphs within individual

functions.

Definition 3. A per-function consistency

graph is an undirected graph, with all the

attested service providers that provide the

same service function as the vertices and

consistency links as the edges. We use a

global inconsistency graph to capture

inconsistency relationships among all

service providers. Two service providers are

said to be inconsistent as long as they

disagree in any function. Thus, we can

derive more comprehensive inconsistency

relationships by integrating inconsistency

links across functions. the global

inconsistency rap. Note that service provider

p5 provides both functions f1 and f2. In the

inconsistency graph, there is a single node

p5 with its links reflecting inconsistency

relationships in both functions f1 and f2.

Definition4. The global inconsistency graph

is an undirected graph, with all the attested

service providers in the system as the vertex

set and inconsistency links as the edges. The

portal node is responsible for constructing

and maintaining both per-function

consistency graphs and the global

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 8

inconsistency graph. To generate these

graphs, the portal maintains counters for the

number of consistency results and counters

for the total number of attestation data

between each pair of service providers.

3.2 Integrated Attestation Scheme

We now present our integrated attestation

graph analysis algorithm. Step 1:

Consistency graph analysis. We first

examine per function consistency graphs to

pinpoint suspicious service providers. The

consistency links in per-function consistency

graphs can tell which set of service

providers keep consistent with each other on

a specific service function. Given any

service function, since benign service

providers always keep consistent with each

other, benign service providers will form a

clique in terms of consistency links. Step

2:Given an inconsistency graph containing

only the inconsistency links, there may exist

different possible combinations of the

benign node set and the malicious node set.

However, if we assume that the total number

of malicious service providers in the whole

system is no more than K, we can pinpoint a

subset of truly malicious service providers.

Intuitively, given two service providers

connected by an inconsistency link, we can

say that at least one of them is malicious

since any two benign service providers

should always agree with each other.

3.3 Result Auto corrections

IntTest can not only pinpoint malicious

service providers but also automatically

correct corrupted data processing results to

improve the result quality of the cloud data

processing service. Without our attestation

scheme, once an original data item is

manipulated by any malicious node, the

processing result of this data item can be

corrupted, which will result in degraded

result quality.

IntTest leverages the attestation data and the

malicious node pinpointing results to detect

and correct compromised data processing

results. Specifically, after the portal node

receives the of the original data d, the portal

node checks whether the data d has been

processed by any malicious node that has

been pinpointed by our algorithm.

4 SECURITY ANALYSIS

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 9

We now present a summary of the results of

our analytical study about IntTest.

Additional details along with a proof of the

proposition presented can be found of the

online supplemental material. Given an

accurate upper bound of the number of

malicious service providers K, if malicious

service providers always collude together,

IntTest has zero false positive. Although our

algorithm cannot guarantee zero false

positives when there are multiple

independent colluding groups, it will be

difficult for attackers to escape our detection

with multiple independent colluding groups

since attackers will have inconsistency links

not only with benign nodes but also with

other groups of malicious nodes.

Additionally, our approach limits the

damage colluding attackers can cause if they

can evade detection in two ways. Our

algorithm limits the number of functions

which can be simultaneously attacked. Our

approach ensures a single attacker cannot

participate in compromising an unlimited

number of service functions without being

detected.

5 EXPERIMENTAL EVALUATION

In this section, we present the experimental

evaluation of the IntTest system. We first

describe our experimental setup. We then

present and analyze the experimental results.

5.1 Experiment Setup

We have implemented a prototype of the

IntTest system and tested it using the

NCSU’s virtual computing lab a production

cloud infrastructure operating in a similar

way. We add portal nodes into VCL and

deploy IBM System S stream processing

middleware to provide distributed data

stream processing service. System S is an

industry-strength high performance stream

processing platform that can analyze

massive volumes of continuous data streams

and scale to hundreds of processing

elements (PEs) for each application.

5.2. Each node runs multiple virtual

machines (VMs) on top of Xen 3.0.3.

The data-flow processing application we use

in our experiments is adapted from the

sample applications provided by System S.

This application takes stock information as

input, performs windowed aggregation on

the input stream according to the specified

company name, and then performs

calculations on the stock data. We use a

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 10

trusted portal node to accept the input

stream, perform comprehensive integrity

attestation on the PEs, and analyze the

attestation results. The portal node

constructs ne consistency graph for each

service function and one global

inconsistency graph across all service

providers in the system. For comparison, we

have also implemented three alternative

integrity attestation schemes: 1) the full-time

majority voting scheme, which employs all

functionally equivalent service providers at

all time for attestation and determines

malicious service providers through majority

voting on the processing results; 2) the part-

time majority voting (PTMV) scheme,

which employs all functionally equivalent

service providers over a subset of input data

for attestation and determines malicious

service providers using majority voting.

5.3 Results and Analysis

We first investigate the accuracy of our

scheme in pinpointing malicious service

providers. Fig. 8a compares our scheme with

the other alternative schemes (i.e., FTMV,

PTMV, and Run Test) when malicious

service providers aggressively attack

different number of service functions. In this

set of experiments, we have 10 service

functions and 30 service providers.

6 LIMITATION DISCUSSION

Although we have shown that IntTest can

achieve better scalability and higher

detection accuracy than existingschemes,

IntTest still has a set of limitations that

require further study. A detailed limitation

discussion can be found the online

supplementary material. We now provide a

summary of the limitations of our approach.

First, malicious attackers can still escape the

detection if they only attack a few service

functions, take majority in all the

compromised service functions, and have

less inconsistency links than benign service

providers. However, IntTest can effectively

limit the attack scope and make it difficult to

attack popular service functions. Second,

IntTest needs to assume the attested services

are input deterministic where benign

services will return the same or similar

results defined by a distance function for the

same input. Thus, IntTest cannot support

those service functions whose results vary

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 11

significantly based on some random

numbers or time stamps.

7 CONCLUSION

In this paper, we have presented the design

and implementation of IntTest, a novel

integrated service integrity attestation

framework for multitenant software-as-a-

service cloud systems. IntTest employs

randomized replay-based consistency check

to verify the integrity of distributed service

components without imposing high

overhead to the cloud infrastructure. IntTest

performs integrated analysis over both

consistency and inconsistency attestation

graphs to pinpoint colluding attackers more

efficiently than existing techniques.

Furthermore, IntTest provides result auto

correction to automatically correct

compromised results to improve the result

quality. We have implemented IntTest and

tested it on a commercial data stream

processing platform running inside a

production virtualized cloud computing

infrastructure.Our experimental results show

that IntTest can achieve higher pinpointing

accuracy than existing alternative schemes.

IntTest is lightweight, which imposes low-

performance impact to the data processing

services running inside the cloud computing

infrastructure.

REFERENCES

[1] Amazon Web Services,

http://aws.amazon.com/, 2013.

[2] Google App Engine,

http://code.google.com/appengine/, 2013.

[3] Software as a Service,

http://en.wikipedia.org/wiki/Software as

a Service, 2013.

[4] G. Alonso, F. Casati, H. Kuno, and V.

Machiraju, Web Services Concepts,

Architectures and Applications (Data-

Centric Systems and Applications).

Addison-Wesley Professional, 2002.

[5] T. Erl, Service-Oriented Architecture

(SOA): Concepts, Technology, and Design.

Prentice Hall, 2005.

[6] T.S. Group, “STREAM: The Stanford

Stream Data Manager,” IEEE Data Eng.

Bull., vol. 26, no. 1, pp. 19-26, Mar. 2003.

[7] D.J. Abadi et al., “The Design of the

Borealis Stream Processing Engine,” Proc.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 12

Second Biennial Conf. Innovative Data

Systems Research (CIDR ’05), 2005.

[8] B. Gedik et al., “SPADE: The System S

Declarative Stream Processing Engine,”

Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’08), Apr.

2008.

[9] S. Berger et al., “TVDc: Managing

Security in the Trusted Virtual Datacenter,”

ACM SIGOPS Operating Systems Rev., vol.

42, no. 1, pp. 40-47, 2008.

[10] T. Ristenpart, E. Tromer, H. Shacham,

and S. Savage, “Hey, You Get Off My

Cloud! Exploring Information Leakage in

Third-Party Compute Clouds,” Proc. 16th

ACM Conf. Computer and Communications

Security (CCS), 2009.

[11] W. Xu, V.N. Venkatakrishnan, R.

Sekar, and I.V. Ramakrishnan, “A

Framework for Building Privacy-Conscious

Composite Web Services,” Proc. IEEE Int’l

Conf. Web Services, pp. 655-662, Sept.

2006.

[12] P.C.K. Hung, E. Ferrari, and B.

Carminati, “Towards Standardized Web

Services Privacy Technologies,” IEEE Int’l

Conf. Web Services, pp. 174-183, June

2004.

[13] L. Alchaal, V. Roca, and M. Habert,

“Managing and Securing Web Services with

VPNs,” Proc. IEEE Int’l Conf. Web

Services, pp. 236- 243, June 2004.

[14] H. Zhang, M. Savoie, S. Campbell, S.

Figuerola, G. von Bochmann, and B.S.

Arnaud, “Service-Oriented Virtual Private

Networks for Grid Applications,” Proc.

IEEE Int’l Conf. Web Services, pp. 944-951,

July 2007.

[15] M. Burnside and A.D. Keromytis,

“F3ildCrypt: End-to-End Protection of

Sensitive Information in Web Services,”

Proc. 12th Int’l Conf. Information Security

(ISC), pp. 491-506, 2009.

[16] I. Roy et al., “Airavat: Security and

Privacy for MapReduce,” Proc. Seventh

USENIX Conf. Networked Systems Design

and Implementation (NSDI), Apr. 2010.

738 IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED

SYSTEMS, VOL. 25, NO. 3, MARCH 2014

Fig. 11. Attestation overhead comparison.

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 13

[17] J. Garay and L. Huelsbergen, “Software

Integrity Protection Using Timed Executable

Agents,” Proc. ACM Symp. Information,

Computer and Comm. Security (ASIACCS),

Mar. 2006.

[18] T. Garfinkel et al., “Terra: A Virtual

Machine-Based Platform for Trusted

Computing,” Proc. 19th ACM Symp.

Operating Systems Principles (SOSP), Oct.

2003.

[19] A. Seshadri, M. Luk, E. Shi, A. Perrig,

L. van Doorn, and P. Khosla, “Pioneer:

Verifying Code Integrity and Enforcing

Untampered Code Execution on Legacy

Systems,” Proc. 20th ACM Symp. Operating

Systems Principles (SOSP), Oct. 2005.

[20] E. Shi, A. Perrig, and L.V. Doorn,

“Bind: A Fine-Grained Attestation Service

for Secure Distributed Systems,” Proc. IEEE

Symp. Security and Privacy, 2005.

[21] Trusted Computing Group,

https://www.trustedcomputing

group.org/home, 2013.

[22] “TPM Specifications Version 1.2,”

TPM, https://www.

trustedcomputinggroup.org/downloads/speci

fications/tpm/ tpm, 2013.

[23] J.L. Griffin, T. Jaeger, R. Perez, and R.

Sailer, “Trusted Virtual Domains: Toward

Secure Distributed Services,” Proc. First

Workshop Hot Topics in System

Dependability, June 2005.

[24] L. Lamport, R. Shostak, and M. Pease,

“The Byzantine Generals Problem,” ACM

Trans. Programming Languages and

Systems, vol. 4, no. 3, pp. 382-401, 1982.

[25] T. Ho et al., “Byzantine Modification

Detection in Multicast Networks Using

Randomized Network Coding,” Proc. IEEE

Int’l Symp. Information Theory (ISIT),

2004.

[26] J. Du, W. Wei, X. Gu, and T. Yu,

“Runtest: Assuring Integrity of Dataflow

Processing in Cloud Computing

Infrastructures,” Proc. ACM Symp.

Information, Computer and Comm. Security

(ASIACCS), 2010.

[27] J. Du, N. Shah, and X. Gu, “Adaptive

Data-Driven Service Integrity Attestation for

Multi-Tenant Cloud Systems,” Proc. Int’l

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 14

Workshop Quality of Service (IWQoS),

2011.

[28] Virtual Computing Lab,

http://vcl.ncsu.edu/, 2013.

[29] Amazon Elastic Compute Cloud,

http://aws.amazon.com/ec2/,

2013.

[30] N. Jain et al., “Design, Implementation,

and Evaluation of the Linear Road

Benchmark on the Stream Processing Core,”

Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’06), 2006.

[31] B. Raman et al., “The SAHARA Model

for Service Composition Across Multiple

Providers,” Proc. First Int’l Conf. Pervasive

Computing, Aug. 2002.

[32] X. Gu et al., “QoS-Assured Service

Composition in Managed Service Overlay

Networks,” Proc. 23rd Int’l Conf.

Distributed Computing Systems (ICDCS

’03), pp. 194-202, 2003.

[33] K.-L. Wu, P.S. Yu, B. Gedik, K.

Hildrum, C.C. Aggarwal, E. Bouillet, W.

Fan, D. George, X. Gu, G. Luo, and H.

Wang, “Challenges and Experience in

Prototyping a Multi-Modal Stream Analytic

and Monitoring Application on System S,”

Proc. 33rd Int’l Conf. Very Large Data

Bases (VLDB), pp. 1185-1196, 2007.

[34] J. Dean and S. Ghemawat,

“MapReduce: Simplified Data Processing on

Large Clusters,” Proc. USENIX Symp.

Operating System Design and

Implementation, 2004.

[35] M. Isard, M. Budiu, Y. Yu, A. Birrell,

and D. Fetterly, “Dryad: Distributed Data-

Parallel Programs from Sequential Building

Blocks,” Proc. European Conf. Computer

Systems (EuroSys), 2007.

[36] A. Seshadri, A. Perrig, L.V. Doorn, and

P. Khosla, “SWATT: Software-Based

Attestation for Embedded Devices,” Proc.

IEEE Symp. Security and Privacy, May

2004.

[37] A. Haeberlen, P. Kuznetsov, and P.

Druschel, “Peerreview: Practical

Accountability for Distributed Systems,”

Proc. 21st ACM SIGOPS Symp. Operating

Systems Principles, 2007

Author’s profile:

INTERNATIONAL JOURNAL OF MERGING TECHNOLOGY AND ADVANCED RESEARCH IN COMPUTING

IJMTARC – VOLUME – IV – ISSUE - 16 - DEC 2016 ISSN: 2320-1363

 15

Ms. P.Mounika received

M.Tech degree from Gokaraju

Rangaraju Institute of

Engineering & Technology affiliated to JNTUH,

Hyderabad. He is currently working as Assistant

professor, Department of CSE, in Nalgonda

Institute of Technology &Sceince ,Nalgonda,

Telangana, India. Her interests includes Web

Technologies, Java Programming, Data Base

Management Systems.

Ms.V.MAHENDAR received

B.Tech Degree from

Nalgonda Institute of

Technology & Science in

Nalgonda. He is currently

pursuing M.tech Degree in Computer Science

and Engineering specialization in Nalgonda

Instituite of Technology & Science in

Nalgonda, Telangana, India.

